Device for holding optical components

Abstract

An arrangement is disclosed for holding optical components, particularly light guides, and is characterized in that the parts of the holder contacting the optical component are made of a material with an index of refraction associated with the index of refraction of the material of optical component.

Claims

1. A device for holding an optical component, particularly a light guide which guides the light at the outer surfaces by total reflection, comprising a material with an optical index of refraction which is smaller than the index of refraction of the light guide, the device holding the light guide at discrete portions of the light guide; wherein the optical index of refraction of the part of the device contacting the light guide is smaller than n u 2 - sin 2 ⁢ α where n 11 is the optical index of refraction of the light guide and α is the maximum incident angle of the in-coupling of light into the light guide and/or the provided maximum exit angle from the light guide with respect to air, and wherein the part of the device contacting the light guide comprises heat-shrinkable material.
CROSS-REFERENCE TO RELATED APPLICATIONS This application claims priority of German Application No. 101 18 465, filed Apr. 7, 2001, the complete disclosure of which is hereby incorporated by reference. BACKGROUND OF THE INVENTION a) Field of the Invention The invention is directed to a device for holding optical components, particularly light guides, in which the light is guided at the outer surfaces of the light guides by total reflection. Light guides of this type are known in essentially two embodiment forms: as cylindrical light guides, e.g., light-conducting fibers, and as prismatic light guides, e.g., light mixing rods, as they are called, such as those used in modern digital projection. b) Description of the Related Art A light mixing rod of the type mentioned above is known, e.g., from German Patent DE 198 19 246. It comprises a polygonal or prismatic body which is totally reflecting at the lateral surfaces. This reference also describes the difficulty presented by holding such mixing rods due to the fact that contact with the holder can inhibit total reflection in some areas and can accordingly result in light losses. As a solution to this problem, the reference proposes that the holder be realized as a punctiform or line-shaped support in order to minimize losses. In particular, it is suggested that the holder be constructed from very thin sheet metal which contacts the mixing rod only by an edge. However, the stability of a holder of this type is in need of improvement. Further, it has been shown that contamination of the outer surfaces of the mixing rod cause considerable losses. In light-conducting fibers with a homogeneous distribution of the refractive index, the same problems occur on principle. Gradient index fibers in which the total reflection occurs inside the fiber and not at its interfaces or boundary surfaces due to a special inhomogeneous refractive index curve were developed as a remedy. However, fibers of this kind are much more complicated to produce than fibers of homogeneous material. OBJECT AND SUMMARY OF THE INVENTION Therefore, it is the primary object of the invention to overcome the disadvantages of the prior art and to provide a simple type of holder for the light guides described above. By light guides is also meant optical waveguides which are suitable for components of the spectrum other than the visible components. According to the invention, this object is met by a device for holding optical components, particularly light guides which guide the light at the outer surfaces by total reflection, in that the holder at least partially comprises a material with an optical index of refraction which is smaller than the index of refraction of the material of the light guide. It is important that the parts of the holder contacting the light guide comprise a material with an optical index of refraction that is smaller than the index of refraction of the material of the light guide. The optical index of refraction of the part of the holder contacting the light guide is advantageously smaller than n ll 2 - sin 2 ⁢ α ( 1 ) where n 11 is the optical index of refraction of the material of the light guide and a is the maximum incident angle of the in-coupling of light into the light guide and/or the provided maximum exit angle from the light guide with respect to air. Therefore, all of the light radiated into the light guide at an angle smaller than α is conducted further in the light guide. The parts of the holder contacting the light guide can comprise transparent silicon, transparent PTFE or transparent FEP. In a particularly advantageous solution, the part of the holder contacting the light guide comprises heat-shrinkable material. In this connection, it is advantageous when the shrinkable material is allowed to preferably completely enclose the lateral surfaces of the light guide. At the same time, this construction of the invention solves the problem that contamination such as dirt particles or the like located on the light guide can severely interfere with the total reflection, since the light guide itself is protected from contamination by the shrinkable material. The invention will be described more fully in the following with reference to the drawings and with respect to two preferred embodiment examples. BRIEF DESCRIPTION OF THE DRAWINGS In the drawings: FIG. 1 shows a mixing rod for a digital projector in accordance with the prior art; FIG. 2 is a view, in section, of a light mixing rod whose jacket surfaces are entirely enclosed by a shrink tube; and FIG. 3 is a drawing of a light-conducting tubular probe in accordance with the invention. DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 shows a light mixing rod for a digital projector such as that known, e.g., from German Patent DE 198 19 246. In principle, the light mixing rod comprises a plane-parallel plate 1 which is made of a glass with a high index of refraction (e.g., BK7 with an optical index of refraction of around 1.52). The rod is held, for example, by four small blocks 2 , 3 , 4 , 5 which are connected to the housing in a manner not shown. In order to realize a maximum incident angle of 30°, for example, the maximum index of refraction for the material of the small blocks is given by formula (1): n max =1.435. Accordingly, the following materials, in addition to many others, are suitable: PTFE (Zeus Industrial Products, Orangeburg, S.C., USA): n=1.35; FEP (Zeus Industrial Products): n=1.338; Silicon glue MED-6033 (NuSil Technology, Carpinteria, Calif. 93013, USA): n=1.41. FIG. 2 is another view, in section, of a light mixing rod 1 whose jacket surfaces are entirely enclosed by a shrink tube 6 . Due to this complete covering of the lateral surfaces of the rod, total reflection can not be disturbed subsequently by contamination. FIG. 3 shows an embodiment example for a light-conducting tubular probe. The light guide 7 , shown in section, ends in a tapered tip 8 . For purposes of holding the light guide, it is partially enclosed by a shrink tube 9 of a material with a suitable index of refraction (calculated according to formula (1)). This shrink tube 9 can also be pulled along the entire jacket surface of the light guide 7 to protect against contamination. The realization of the invention is not limited to the embodiment examples shown herein. In particular, other materials which advantageously meet the condition of formula (1) can also be suitable for the holder. While the foregoing description and drawings represent the present invention, it will be obvious to those skilled in the art that various changes may be made therein without departing from the true spirit and scope of the present invention.

Description

Topics

Download Full PDF Version (Non-Commercial Use)

Patent Citations (21)

    Publication numberPublication dateAssigneeTitle
    DE-19819246-C1November 11, 1999Zeiss Carl Jena GmbhProjektionseinrichtung
    DE-29710678-U1October 02, 1997Lummer Bernhard DrLichtleiteranordnung für Laserstrahlen
    DE-3630351-A1March 12, 1987Ord IncOptische vorrichtung
    DE-3708513-A1September 24, 1987Block Myron JVerfahren und vorrichtung zur nukleinsaeure-analyse
    DE-3854841-T2May 23, 1996Aster CorpKoppler aus optischer faser
    DE-4007218-A1September 12, 1991Nath GuentherLiq. filled optical conductor tube - has plastic construction with each end plugged internally and fitted with outer thin-walled sleeve so plugs do not slide out
    DE-4233087-A1April 07, 1994Nath GuentherLiq. waveguide with fluorocarbon polymer sheath - has thin Teflon AF lining layer for reduced cost and transmission losses
    EP-1291691-A1March 12, 2003Agilent Technologies, Inc. (a Delaware corporation)Glasverbindung für ein faseroptisches Modul und ein Verfahren zum Verbinden einer optischen Faser mit einem Gehäuse eines optischen Moduls
    JP-2000266953-ASeptember 29, 2000Furukawa Co Ltd, 古河機械金属株式会社Optical fiber cable for infrared ray
    JP-H07159819-AJune 23, 1995Mitsubishi Cable Ind Ltd, 三菱電線工業株式会社Light source device
    JP-S54150139-ANovember 26, 1979Olympus Optical Co LtdClad rod for optical transmission
    JP-S60181712-ASeptember 17, 1985Mochida Pharmaceut Co LtdCovering body for crystalline fiber
    JP-S63163404-AJuly 06, 1988Matsushita Electric Ind Co LtdOptical fiber cable
    US-2003077057-A1April 24, 2003Sumitomo Electric Industries, Ltd.Optical fiber and optical transmission system including the same
    US-3982123-ASeptember 21, 1976Bell Telephone Laboratories, IncorporatedOptical fiber power taps
    US-3996067-ADecember 07, 1976The United States Of America As Represented By The National Aeronautics And Space AdministrationSilicon nitride coated, plastic covered solar cell
    US-4799755-AJanuary 24, 1989General Electric CompanyLaser materials processing with a lensless fiber optic output coupler
    US-4919513-AApril 24, 1990Hitachi Cable, Ltd.Plastic optical fiber
    US-5204930-AApril 20, 1993Bayer AktiengesellschaftOptical fibers, and a process for their production
    US-5790742-AAugust 04, 1998Matsushita Electric Works, Ltd.Optical fiber
    US-6540389-B1April 01, 2003Storz Endoskop GmbhLighting system for illumination of an observation space

NO-Patent Citations (1)

    Title
    Designers Guide to Fiber Optics, AMP Incorporated, 1982, pp. 22-25.

Cited By (0)

    Publication numberPublication dateAssigneeTitle